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PROPERTIES OF LOW-ASPECT-RATIO POINTED WINGS AT SPEEDS
BELOW AND ABOVE THE SPEED OF SOUND

By ROBEET T. JONES

SUhlMARY

Lmo-a~pect-ratio wings hating pointed plan. forms are treated
on the assumption that the jtou) poteniia18 in plane8 at right
angle8 to the long axis of the airfm”le are m“milarto the correspond-
ing twodimensional potentials. For the limiting cuse oj small
a.ngle8 oj attack and low a%pect ratio8 the theory bm”ng8out the
jolkwring tignijicant properties:

(1) 2’7Mlift of a 8[endw pointed airfoil moving in the direc-
tion of it8 long ari8 ifepend~ on the inorea8e in width oj the i?ec-
tions in a downstream direction. Section8 behind the 8edion
of mam”mum width derelop no lift.

{9) Y7M.spanwise loading of such an airfoil is independent
of the plan form and approaches the distribution giving a
minimum induced drag.

(9) The l~t dtittilwtion of a pointed aiqbil trareling poird-
Joremost i8 relatively una~ected by the mnnprescibility oj the air
below or abme the 8peed of 8ound.

A te8t of a triangular aiglil at a ilfwh number of 1.76
nerijied the theoretical ralues oj lift and csnter of preswre.

INTRODUCTION

The assumption of small disturbances in a twodimensional
potential flow leads to the well-known thin-airfoil theory
of Munk (reference 1) and thePrandtl-Glauert rule (references
2 and 3) at speeds less than sonic. At speeds above the speed
of sound, application of the same assumptions leads to the
Ackeret theory (reference 4) according to which the wing
sections generate plane sound waves of small amplitude.
As is well lmown, the Ackeret theory predicts a radical change
in the properties of such wings on transition to supe~nic
velocities and these ohrmges have been veriiied by experi-
ments in supersonic wind tunnels (reference 5).

Both the Ackeret theory md the Munk theory apply to
the case of a wing having a large span and a small chord.
The present discussion is based on assumptions similar to
those used by Ackeret and Munk but covers the opposite
extreme, namely, the wing of small span and Iarge ohord.
In the Mter case the flow is expected to be two dimensional
when viewed in planes pefiendicular to the direction of
motion.

A theory for the rectangular wing of small aspect ratio
has been given by Bollay (reference 6). Bollay assumes a
separated, or discontinuous, potential flow similar to the
well-known Kirchoff flow and shows that ~under these
circumstances the lift is proportional to the s@are of the
angle of attack. Bollay does not consider the’ effect of
compr=sibiht.y. The present treatment covers other plan
forms and, although based on different assumptions, is not

inconsistent with Bollay’s theory in the Iimitiug case of small
angles of attack.

By limiting the plan forms ta small vertex angles, the
properties of the wings in compressible flow at high subsonic
and at supersonic speedaare also covered. Tsien (reference 7)
has pointed out that Munk’s airship theolT (reference 8)
applies to a shmderbody of revolution at speeds greater than
sonic. The lift and moment of such a body are not ex-
peoted to change appreciably with Mach number. The
present paper gi-wwan analysk of the low-aspect-ratio air-
foil based on similar assumptions and shows that little change
of the lift distribution of an airfoil of pointed plan form lying
near the center of the Mach cone is to be expected.

SYMBOLS
flight velocity
angle of attack
wing area

b_2

()
aspect ratio ~

distance along axis of symmetry of pointed airfoil,
measured downstream from nose

spanwise distance, measured from axis of symmetry
vertical distance from plane of wing . tb,
time
additional apparent mass (spanwise section)
local span

..—

chord
density of air ‘“v.

dynamic pressure
()

;PJ”2

local lift force (per length &c)

(J10calliftcoefficient3%
iEduced drag

()induceddrag coefficient ~
qs

total lift

0lift coefllcient ~

surface notential.

( ‘Mspanwise-location parameter c.os- —

local pressure difference
Mach number, ratio of flight velocity to speed of “-

sound ,,)1

distance of center of pressure from’nose of airfoil
Pitching momentpitching-moment coefficient

( qscmaz )
lift at Mach number M
lift at zero Mach number
maximum (used as subscript)
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THEORY FOR WINGS OF LOW ASPECT RATIO ““

Tho flow about aD airfoiI of very low aspect ratio may be
considered two dimensional when viewed in cross sections
perpendicular to the longitudinal axis. With this iclealiza-
tion, the treatment of the low-aspect-ratio airfoil becomes
exceedingly simple; formulas are obtained that are similar
in some respects to those derived by Munk (reference 8)
and Tsien (reference 7) for an elongated body of revolution.

Perhaps the simplest case from the analytical point of
view is that of the long, flat, triangular airfoil traveling
point-foremost at n small angle of attack. Viewed from a
reference system at rest in the undisturbed fluid, the flow
pattern in a plane cutting the airfoil at a distance z from
the nose is the familiar two-dimensional flow caused by a
flat plate having the normal velocity Va. (Seo fig. 1.)
Observed in this plane, the width of the plate and hence the
scale of the flow pattern continually increase as.the airfoil
progresses through the plane. This increase. in the scale
of the flow pattern requir6s a local lift force 1 equal to the
downward velocity Va times the local rate of incrense of
the additional apparent mass m’, or

~= ~adm’
x

=.V+’

8ince
@

‘dt ‘“’” ““ ““”

By a well-known formula from twodimensional-flow
theciy,

where b is the local width of the plati.

elm’—.~x–u;pdx~-

and the lift 1 per length dx will be given

Heni6

by the expression

db
1==” ; “b z ‘x

Dividing by ~ V’ and by the area b dx gives the local lift

coefficient

db
cl==a Z (1)

When this flow is considered in more detaiI, it is found from
the two-dimensional theory that the surface potential $ is
distributed spanwise according to the ordinates of an ellipse,
that is, ,.. .

=kV~~sine (2)

where cos 6 = ~ and the sign changes in going from theb/2

—.
,upper to the lower surface-of the airfoil. “(Seefig, 2.) An
instant later, in the same plane, the ordinatea are those of a
sIightiylarger ellipse, corresponding ta m increaseof 4 Thc~
local pressure difference is given by the local rate of increase
of 4, that is,

Ap=2p ~

where ?@/ab is a function of y. DiPierent.iatiollof # yicl&

the equation

Ap=2p~% — –~—
db a

J( )
b’ ,Zzz
3 –y

or
AJp= 2CZdb
!l Slnt?zz (4)

The pressure dis&ibution thus shows an infinito peak along
the sloping sides of the airfoil similar to the pressure pmk
at the leading edge of a conventional airfoil. Tho distribu-
tion aIong radial lines pas&ng through the vertex of thu

triangle
( )

lines of constant fi is uniform (fig. 3), howovcr,

and the center of pressure coincides with the cent.erof arm,
Equations (1) and (4) show that the development of lift

by the long slender airfoil depends on an expansion of the
sections in a downstream direction; hence a part of the
surface having parallel sides would develop no lift. l?urtlle.r-
more, a tiecreasing width would, according to equation (4,
require negative lift with infinite negative prmsure peaks
along the edges of the narrower sections, In the actual flow,
however, the edge behind the maximum cross section will
lie in the viscous or turbulent wake formed over the surface
ahead; and for this reason it will be assumed that the infinitt
pressure--differenceindicated by equation (3) cannot” tm dc$-
veloped across these edges. It is this assumption, corre-”
spending to the Kutta condition, which gives the.plate the
properties of an airfoil as distinct from another type of
body, such as a body of revolution.
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With the aid of the Kut.ta condition, it may easily be
shown that sections of the airfoil behind the section of great~t
width develop no lift. A potential flow satisfying both the
boundary condition and the Kutta condition maybe obtained
by the introduction of a free surface of discontinuity behind
the widest section. This surface of discontinuity (fig. 4)
would be composed of pmallel vortices extending down-
stream from the widest section of the airfoil as prolongations
of the vortices representing the discontinuity of potential
over the forward part of the airfoil. This sheet, although
possibly wider than the downstream sections of the airfoil,
still satisfiw their boundary condition, since the lateral
arrangement of the vortices is such as to give uniform
downward velocity equal to 17LYover the entire width of the
sheet including the rearward portion of the airfoil. Since
the pressure difference across the airfoil is proportional to
@@x and since this gradientt disappeara as soon as the
vortices become parallel to the stream, no lift is developed
on the rearward sections.

Integration of the pressures in a chordwise direction from
the leading edge downstream to the widest section will give
the span load distribution and the induced drag. The span
load distribution is

f
‘= Ap dx
w.

or, from equation (3), _
g= 2P ~T@

From equation (2),

Hence ZIL/@ is elliptical and independent of the plan form.
With the elliptical span load the induced drag ia a minimum
rmd is equal to 79

~f=#-J (6)

A second integration of ~ dy across the widest section

gives the total Mt, which is

L=; pV’ab.az2

—.——

I
I
I

FKWIB~8.-Pre.wuredlstrfbut!on. Fmum 4.—Wake.

(6)

The lift of the slender airfoil therefore depends only

width and not on the area. If the lift is divided by
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on the

;p J’%

and if the aspect ratio A is considered to be b~~+zsthen

CL+Y (7)

and the induced-dragicoefficient is —

= CL; (8)

From equation (8) it appema that the resdtant force lies
halfway between th? normal to the surface and the normal
to the air stream.

It is seen that in the case of a rectangular plan form th~
simp~ed formula (equation (4)) giv= an infinite concen-
tration of lift at the leading edge and no lift else~~erej
whereas a more accurate theory would show some distribu-
tion of the lift rearward. If the rate of increase of the width
becomes too great, the flow cannot be expected to remain
two dimensional. It can be shown by examination of the
known threedimenaional (nordifting) potential flow a~und
an elliptic disk (reference 9), however, that the two-
dimensional theory gives a good approximation in the case
of an elliptical leading edge, which indicates that the theory

W--t-H
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o t 2 3
Aspecf raf~ A

FIGIJEE6.-Comparisonof lift wkulatedby presenttheoryforeIliptIcaIwingsof lowasp?d
ratio withresulwof K&rim (referemw10).

is applicable over a large range of nose shapes. In figure 5 is
ahown a comparison of the lift calculated by the present
theory for elliptical wings of low aspect ratio with the
results of the more accurate threedimensional potential-flow
calculations of Krien& (reference 10). The results me in
good agreement up to aspect ratios approaching 1. Appli-
cation of equation (4) givea a center of pressure on the
elliptical plan form at one-sixth of the chord. Figure 6 also
shows this ,value compared with values given by IGienes’
theory. In this respect it appears that the agreement is
not so good as for the lift.

EFFECT OF COMPRESSIBI13TY

In order to show the effect of compressibility, use wiU be
made of the theory of potential flow with smaIl disturbances.
Glauert (reference 2) and Prandtl (reference 3) have demon-
strated that, at subsonic speeds, a distribution of potential
satisfying Laplace’s equation will satisfy the linearized
compressible-ffow equation if the distribution # (z, y, z) is
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FK+UBF.O.-Oamparfmnof renter of pressuremloulatedby premnttheory for ellfpffcal
wingnof low a9m0trat!owithre3ult4of Krlen,e9(reforenoe10).

foreshortxmed along the “ direction of motion by the
transformation

“=4% ‘“” ““Y’=Y - 2’=’

This fact may be applied in a calculation procedure by starh
ing with a fictitious airfoil longer in the x-direction than the
true one and calculating the potential distribution for this
airfoil by methods of incompressible flow. The correct
dimensions and correct distribution of @ are then obtained
when the transformation is applied.

For the loug slender airfoil, the potential distribution at
each section is simiIar to that for an infinitely long body;
therefore Z%#@xand hence the local pressureavary in inverse
proportion to the length. The foregoing c~culation pro-
cedure gives a null result in this case, since the presmres
calculated for the fictitious .airfcd at 31= O will be redu;ed
in the same ratio that the length is increased and the Lmwntz
transformation to restore the correct Iength will ah restore
thi same pressures as those .ob~ined at ~=o. Shce
&#@z is unchanged by the transformation, the normal
velocity component and hence the ang~e of attack are un-
changed also. Them reaulk can be obtained by referring
directly to the linearized equation for the potential

(9)

(See reference 3.) If the airfoil @ suEiciently slender,
&~/&# can be neglected in comparison with Zhf@x except
near the edge. Since the lift is proportional to ikjlbx, the
increase of the lift with Mach number can therefore be
neglected in comparison with the lift.

It is important to note that the theory of small disturb-
ances is not limited to subsonic velocitie.s and that, so long

&d. ...
m the term (1—M*) ~ In equation (9) remains Smallj the

solution in the region of the wing will continue b be given
by the potential (equation (2)). Evidently the Mach num-
ber cannot be increased indefinitely, for then the coefficient
of W#@? will become so kwge that the first term will no longer
be negligible. The required condition will be satisfied, how-
ever, by adopting ~“pointid plan form with tb” vertex angle
so small that the entire surface lies near the center .of the

Mach cone (fig. 7). The condition of a small vertex angle is
a.kw necessary in order that the potential distribution of
equation (2) may apply. In the case of a wing with a bhmt-
leading-edge plan. form, abWpt changes in the flow arise on
transition to supersonic velocitics, and potential “flowof tho
subsonic type no longer exists.

The lift and lift distribution for rectangular surfaces at
supersonic speeds have been calculated by Schlichting (refer-
ence 1l].: Figure 7 shows the variation of lift-curve slope
with Mach number as obtained from Schlichtiug’s rcsulta for
rectangular winga of two different aspect ratios and for tho
range of speeds in which the two Mach cones from tho tips
do not r:ach the ce@r of the wing. In the subsonic mnge,
values ~ven by the Prandtl-G1auert rule are shown. Thcso
curves are compared with the values indicated by tho prcsmt
theory for a triangular wing lying near the center of tho
Mach cone. Figure 8 shows the travel of the center of pres-
sure for these plan forms. It is to bo noted that, with the
bhmt-leading-edge plan forms, the center of pressure trmwls
from a point near the quarter chord to a point near the mid-
chord when the v.elooity is increased, above the speed of
sound.
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FIGURE7.—Varlarlonof lIft with Machnumberfordlflerentplm forms.
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TESTS OF A TRIANGULAR AIRFOIL AT SUPERSONIC SPEED

As a test of the foregoing analysis, a small triangular air-
foil in the form of a steel plate with rounded leading edges
was constructed and tested in the Langley model supersonic
tunnel. The tests were made at a .Mach number of 1.75.
Fiiure 9 shows the detafls of the model and ilgure 10 sum-
marizes the results of the test. At zero anglo of attack a
small lift and a small pitching moment occur, which are pre-
sumably the result of the camber given the airfoil by round-
ing off the leading edges in the manner shown by section
A-A in figure 9. In general, the results are in good agree-
ment with the theory if an allowance is made for this camber,
as shown in figure 10.

CONCLUSIONS

1. The lift of a slender, pointed airfoil movcingin the di-
rection of its long a---- depends on the increase in width of
the sections in a downstream direction. Sections behind
the section of maximum -width develop no lift.

2. The spanwise loading of such an airfoil is independent
of the plan form and approaches the distribution giving a
minimum induced drag.

3. The lift distribution of a pointed airfoil traveling point-
foremost is relatively unaffected by the compressibility of the
air below or above the speed of sound.

LANGLEY L~EMORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOE AERONAUTICS,

LANGLEY FIELD, I’A., May 11, 19&.
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